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We studied the temporal dynamics of activity within and across
functional MRI (fMRI)–derived nodes of intrinsic resting-state net-
works of the human brain using intracranial electroencephalogra-
phy (iEEG) and repeated single-pulse electrical stimulation (SPES)
in neurosurgical subjects implanted with intracranial electrodes.
We stimulated and recorded from 2,133 and 2,372 sites, respec-
tively, in 29 subjects. We found that N1 and N2 segments of the
evoked responses are associated with intra- and internetwork
communications, respectively. In a separate cognitive experiment,
evoked electrophysiological responses to visual target stimuli
occurred with less temporal separation across pairs of electrodes
that were located within the same fMRI-defined resting-state net-
works compared with those located across different resting-state
networks. Our results suggest intranetwork prior to internetwork
information processing at the subsecond timescale.

CCEP j event related potentials j intracranial EEG j gradual-onset continuous
performance task j human

I t has been known for a while that certain regions of the brain
have correlated activity, forming “intrinsic networks” that can

be identified while people are resting (SI Appendix, Table S1).
These correlated activities were first discovered by measuring
blood-oxygenation level–dependent (BOLD) signals and later
confirmed with measures of electrophysiological activity (1–10).
In a series of studies, we and others have shown that distinct
sites of the cerebral cortex that are part of a functional MRI
(fMRI)–defined intrinsic network become coactivated during
an experimental task and are connected at rest via slow fluctua-
tions of their local high-frequency broadband (HFB) power
(5–10).

Much of what we know about the resting-state intrinsic net-
works has been gleaned from studies that have relied on neural
data within a slow temporal domain. As a result, the temporal
dynamics of activity within and across these intrinsic networks
remain almost entirely unknown. Such information may provide
core mechanistic information about the functional architectural
design of our brains.

To address this unknown, we collected information from a
relatively large number of recording sites in a group of human
subjects implanted with intracranial electrodes as part of their
clinical diagnostic workup. In each subject, repeated single
electrical pulses were delivered intracranially in specific elec-
trode sites while we recorded evoked responses from hundreds
of other intracranial electrodes as routinely performed in clini-
cal centers (11). This method, known as single-pulse electrical
stimulation or corticocortical evoked potential (CCEP), allows
one to explore the presence or absence of signal flow and its
timing between a stimulated region and hundreds of target
areas (i.e., those implanted with recording electrodes). The
high temporal resolution of this method combined with precise
anatomical information about the sites of stimulation and
recording allows for measurements down to the millisecond
timescale and millimeter precision (12). Also, because the

source of the signal and time of evoked responses are known,
this method provides indirect information about possible direc-
tionality of the propagation of electrophysiological signals
within the brain. The prevailing current hypothesis is that direct
anatomical connectivity between the seed and target regions
will evoke sharper and faster responses while second-order con-
nections are thought to evoke slower and dispersed responses
(13, 14).

Results
Single electrical pulses were delivered individually to 2,133 cor-
tical sites and recorded in 2,372 sites across 29 subjects (Fig. 1
and SI Appendix, Fig. S1 and Table S2). Our final sample there-
fore yielded 33,721 unique paired time series across all subjects.
Since stimulations and recordings were performed in a bipolar
manner (i.e., between two adjacent electrodes), each time series
corresponded to one pair of electrodes that was stimulated and
one pair that was recorded from.

In keeping with the large body of CCEP literature, we found
that the morphology of the evoked responses was highly hetero-
geneous across electrode pairs. While some had an early sharp
peak (usually termed the N1 peak, 10 to 50 ms), other
responses were late and less sharply contoured (slow wave-like
potential often termed the N2 peak, 50 to 200 ms). Some
showed large N1 and N2 peaks while others showed only an N2
peak. This heterogeneity of the number and latency of observed
peaks in a CCEP response has been well-documented (13, 15).

Next, we extended our previous findings (16) to the whole-
brain level and tested the hypothesis that the timing of evoked
responses would depend on the network identity of the seed
and target areas being evaluated. For this, we first used a
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k-means clustering algorithm to characterize the distribution
profile of the time to first peak according to the network iden-
tity of each time series. We found three clusters of electrodes
(Fig. 2A; cluster 1: 0 to 55 ms; cluster 2: 55 to 107 ms; cluster 3:
107 to 200 ms). The average response for each of the three
clusters is shown in Fig. 2B. Responses in the fastest cluster
showed a sharp N1 peak with a following broad N2 peak, while
the slower two clusters showed only an N2 peak without an N1
peak. We then used a permutation test to determine the net-
work signatures of each of the three identified clusters. As
shown in Fig. 2C, two clear dissociated patterns were identified.

Most importantly, we discovered that the fastest responses with
N1 peaks (cluster 1) were predominantly intranetwork responses
(i.e., the stimulated and recorded electrodes belonged to the
same intrinsic network). The fastest cluster contained all possible
intranetwork connections except the frontoparietal intranetwork
connection, which is not present in any of the three clusters.
This is likely due to the low number of these intranetwork
responses in our dataset lowering the sensitivity for this intranet-
work connection (SI Appendix, Fig. S2). By contrast, the slower
two clusters with only N2 peaks (clusters 2 and 3) contained
exclusively internetwork responses.

In addition to intranetwork signals occurring only in the fast-
est cluster, the slower two clusters shed light on the directional-
ity of the speed of propagation between certain networks. For
example, the default-to-visual signals are in the middle cluster
(cluster 2) whereas the visual-to-default signals are in the slow-
est cluster (cluster 3). This implies that the speed of signal
propagation is not homogeneous between networks and also
depends on the direction of the propagation. However, we are
mindful that the directionality of signal propagation across net-
works as we report here needs to be explored and validated fur-
ther across a large sample of subjects with near-identical pairs
of stimulation and recording sites across given networks of
interest.

To ensure that the CCEP findings were not sensitive to the
choice of the number of clusters, we repeated the analysis for
two to seven clusters (SI Appendix, Fig. S3). In all of these

Fig. 1. Distribution of implanted electrodes. Signal from each electrode
was continuously recorded during stimulation and task performance. Pur-
ple electrodes (n = 239) were recorded but not stimulated. Orange electro-
des (n = 2,372) are those that were recorded from and also used as seeds
for stimulations. Electrodes cover all lobes and all intrinsic cortical
networks.

Fig. 2. Temporal signature of intra- and internetwork signal flow. (A) Histogram of the time to first peak for the time series of each stimulation–record
electrode pair. Colors indicate the three clusters generated from a k-means algorithm with borders at 55 and 107 ms (dashed lines). (B) Average normal-
ized evoked potentials for the three clusters shown in A. The morphology of the average responses shows that cluster 1 contains evoked responses which
have an N1 and N2 peak while clusters 2 and 3 only contain N2 peaks. (C) Network signatures for the fast responses (cluster 1) and the late responses
(cluster 3) generated by permutation analysis. It is clear that the fast response is dominated by intranetwork connections while the late response contains
most of the internetwork connections. Cluster 2 also exclusively showed four internetwork responses, and the detailed network connections can be found
in SI Appendix, Table S3. Note this analysis generates the most prevalent connections. Therefore, if a connection is not shown it does not mean that it
does not exist at all, but it is not a major component of the cluster.
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analyses, the intranetwork responses are dominant in the fastest
clusters. Therefore, our major result that intranetwork signals
propagate faster on average than internetwork signals is not
dependent on the number of clusters. Furthermore, a plot of
the sum of squared errors versus the number of clusters shows
a sharp kink at k = 3, suggesting that three clusters is the opti-
mal choice.

We also reexamined our results to explore whether a shorter
Euclidean distance between intranetwork compared with inter-
network pairs could explain our findings. The average distance
between intranetwork pairs was 49.5 mm (SD 24.1 mm, n =
25,430) and between internetwork pairs was 44.8 mm (SD 23.1
mm, n = 8,291). Therefore, both internetwork and intranetwork
time series measured long-distance responses, and Euclidean
distance alone cannot explain our results.

To validate the result that intranetwork signals generally prop-
agate faster than internetwork signals, we conducted a parallel
study to analyze the timing of task-evoked electrophysiological
responses. For this, we asked the same participants to perform a
gradual-onset continuous performance task (gradCPT; Fig. 3A)
(17, 18).

We recorded induced HFB (70- to 170-Hz) neural responses
to behaviorally relevant stimuli. We chose this experimental
task because it engages all six intrinsic networks (visual stimuli,
subject responses by mouse click, top-down sustained attention,

and bottom-up attention as well as withdrawal of habitual
responses to infrequent oddball stimuli). We have shown previ-
ously that this task leads to negative deflections in HFB power
amplitude in the default network and positive deflections in
HFB power amplitude in several networks such as visual, ven-
tral attention, dorsal attention, and frontoparietal executive
networks (18–20). We hypothesized that two regions will show
HFB responses closer in time if the two sites are in the same
fMRI-defined intrinsic network. Indeed, this was the case.
Probability distributions of the absolute difference in time to
peak for intra- and internetwork pairs confirmed a clear differ-
ence in the distributions and a 44-ms difference in median
times (P < 0.0001 by the two-sided Wilcoxon rank-sum test)
with intranetwork signals appearing closer in time on average
than internetwork signals (Fig. 3B). A mixed-effect model was
also implemented to adjust for the hierarchical nature of the
data with multiple responses measured from a single patient
and the distance dependence of the time to peak difference (SI
Appendix, Fig. S4). This model produced a coefficient of a 67.6-
ms (95% CI: 100.0 to 35.2 ms; P < 0.0001) difference between
inter- and intranetwork responses (SI Appendix, Table S4), indi-
cating that neither had a significant effect on the results.

Discussion
We used two independent methods and confirmed that signal
flow within the human brain follows a temporal order: Early
processing of signals within the same functional networks is fol-
lowed by later cross-network communications. In the context of
recent results which combined CCEP and diffusion-weighted
imaging (21), it is likely that this faster intranetwork propaga-
tion is a measurement of a preferential structural connectivity
within the networks. While the data presented here cannot pro-
vide a definitive statement on such connections, it adds to a
growing body of evidence that fMRI resting-state networks par-
tially reflect the underlying structure of the human brain (22).

The strength of our findings is remarkable especially given the
limitations of our methodology. For instance, we relied on a
coarse segregation of the human brain into six intrinsic networks
defined in the standard reference brain space. In reality, we may
be dealing with a much higher number of networks than six.
More importantly, the “network membership” of the electrodes
was determined only by transferring the location of electrodes
from a native anatomical space to the standard space (23). By
doing so, we caused a shift in the location of electrodes depend-
ing on the differences between the native and standard brain
spaces. Although we attempted to minimize this by conserva-
tively using only areas of the atlas that have a high confidence in
network assignment, we are mindful that a transfer from native
space to standard space could lead to missing the effects of
subject-specific anatomy and network distribution. Utilizing
native anatomical space information with individual-level fMRI
was unfortunately not feasible in our current study. Such record-
ings in the future may provide a more fine-grained map of signal
exchanges using individual brain space fMRI data.

The second limitation of our measures pertains to the use of
gradCPT task design which makes the HFB onset of a given
trial variable given that the stimuli are gradually fusing with
each other. This causes more variability in the time to peak
used in our analysis. While this potential bias is nondifferential
between intra- and internetwork pairs, it produces significant
variance in the measured times to HFB peaks and may make
the measurement less precise. However, we have previously
found that the HFB response onsets to gradual-onset target
stimuli within default, dorsal attention, and salience network
regions (18) are comparable to those found in tasks involving
more abrupt stimulus onsets (8, 24). It will be important to

Fig. 3. Experimental data. (A) Design for the gradCPT task illustrating the
gradual transition between images which leads to the activity seen by
iEEG. Grayscale visual images of either city or mountain scenes gradually
transitioned from one to another every 800 ms. The subject is instructed
to press a button when a city appears but to withhold response when a
mountain is noticed. (B) Probability distributions for the difference in time
to peak of regional HFB activity during the experiment for pairs of electro-
des within (n = 274) or across (n = 478) networks. The distributions are
highly dissimilar. Intranetwork electrode HFB activity is significantly closer
in time than the HFB activity in pairs of electrodes located across different
networks. The median time difference is 44 ms faster in intranetwork elec-
trodes, and this difference is statistically significant at the P < 0.001 level.
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further validate and extend our findings using distinct task
paradigms involving a wider range of stimuli.

We and others (15, 25, 26) have shown that epilepsy signifi-
cantly alters the speed of signal flow in the human brain which
in turn could have affected our results. Epileptic electrode sites
in our cohort, which were clinically determined, constituted
only a very low percentage of the total contacts in our entire
dataset. Of the 33,721 CCEP time series used in the analysis,
only 525 either stimulated or recorded from an electrode con-
tact that was determined to be in the seizure-onset zone. We
reran our analysis by excluding these contacts and found the
results to be identical to the original analysis. Similarly, none of
the task-evoked responses used in our analysis involved a con-
tact which showed spontaneous epileptic activity. Additionally,
none of the patients experienced a seizure during either the
CCEP or task-based measurements. We therefore believe that
recording from or stimulating epileptic regions of individual
patients was not a significant confounder. We cannot defini-
tively exclude the possibility that the connectivity of other
regions may be affected by the epileptic activity. However, such
individual-specific changes likely averaged out over the large
number of patients in our dataset.

In conclusion, our study provides a map of the timing of sig-
nal flow within and across networks in the human cortex with
high temporal resolution. Convergence of findings across two
separate methods gives us confidence that our findings are not
an artifact of our measurements. Our mapping covers intrinsic
networks across the human brain (though at a coarse level) and
provides a greater understanding of how physiological signals
are processed at the millisecond level.

Methods
Subject Details. Twenty-nine subjects (mean 26 y of age; 43%male) with focal
epilepsy were recruited in this study. Each subject underwent implantation of
depth intracranial electrodes at Beijing Tiantan Hospital to localize their seiz-
ures, with the location of electrodes determined solely by clinical needs. Depth
electrode contacts (HKHS Healthcare) had a contact length of 2mm, diameter
of 0.8mm, and interelectrode spacing of 1.5mm. All participants gave written
informed consent before their participation. This study was approved by the
Medical Ethics Committee of Beijing Tiantan Hospital.

Electrical Stimulation. Single-pulse stimulations were performed with a bipo-
lar setup using a cortical stimulator while the subjects were awake and rest-
ing. Single pulses of electrical current (5 mA, biphasic, 500 μs per phase) were
injected between pairs of adjacent intracranial electrodes at a frequency of
0.5 Hz. Data were recorded with a Nihon Kohden system using a sampling
rate of 1,000Hz. The recording system included a band-pass filter of 0.08 to
300 Hz to exclude slow varying and high-frequency effects. The number of
stimulation trials varied between subjects and electrode pairs due to time con-
straints (range 3 to 80; mean 39). Electrical potentials were simultaneously
measured in all other electrodes with a sampling rate of 1,000 Hz.

Discarded Data. As we were interested in only the cortical networks, electro-
des in the white matter and subcortex were excluded. Specifically, we kept
only electrodes which contained at least 1 gray matter voxel within a 2-mm
sphere centered on the electrode. To minimize volume conduction effects, we
also discarded data recorded from electrodes on the same electrode shaft as
the stimulated electrode.

Analysis of Evoked Responses. Electrode signals were first rereferenced to a
bipolar montage. Evoked responses in nonstimulated electrodes were then
segmented into 225-ms epochs (25 ms prestimulus and 200 ms poststimulus)
which were time-locked to the delivery of the stimulus. Time series data were
normalized to the mean and SD of the first 20 ms of the epoch (i.e.,�25 to�5
ms) and averaged over all trials of a given stimulation. Because the direction
of activity is ambiguous in data collected from bipolar electrodes, we chose
the sign of the time series so that the maximum evoked response was positive
(13). Finally, peaks were detected using MATLAB’s peak detection algorithm
and a minimum prominence was set as seven times the SD of the mean presti-
mulus baseline for each time series. All time series which did not show a signif-
icant responsewere discarded from the analysis.

Neuroimaging Acquisition. In a preoperative MRI session, all subjects under-
went structural MRI (T1-weighted). In addition, a computed tomography (CT)
scan was obtained following electrode implantation, which was used for ana-
tomical localization of electrode contacts. Neuroimaging was performed at
Beijing Dongzhimen Hospital on a 3.0-T Siemens MAGNETOM Verio System
with a 32-channel head coil. For T1 scans, an MPRAGE sequence was acquired
with parameters 256×256 matrix, 176 slices, 1.00× 1.00×1.00–mm voxels, 9°
flip angle, 1,900-ms repetition time, and 2.53-ms echo time.

Anatomical Localization of Electrode Contacts. We used the iELVis pipeline
(27) for anatomical localization of electrode contacts. First, we processed and
reconstructed the T1 scan using FreeSurfer v6.0.0 (recon-all command) (25).
We then aligned the postimplant CT image to the preimplant T1 scan using a
rigid transformation (six-degree-of-freedom affine mapping). Using BioImage
Suite (28), we manually labeled each electrode location on the T1-registered
CT image. The electrode coordinates obtained from this approach were used
for visualization and to assign electrodes to networks of interest.

Network Membership Assignment. Electrodes were assigned to the nearest
Yeo 7 networks (23) as determined by the iELVis parcellation algorithm after
mapping the patient-specific electrode locations to the standard Yeo 7 atlas.
Furthermore, because of the limbic network’s functional and anatomical prox-
imity to the default network (29) and because the limbic network is often in
the signal dropout zone of fMRI leading to low confidence in network assign-
ment, electrodes assigned to the limbic network by this algorithm were
instead assigned to the default network. We took two additional steps to
ensure this network assignment was as accurate as possible to the true net-
work despite the lack of subject-specific fMRI data. First, if electrodes in a pair
of the bipolar montage (i.e., immediate neighbors) were assigned different
networks using this method, we discarded the pair from further analysis. This
ensured that we were not stimulating multiple networks or recording from
multiple networks. Second, the confidence of the network assignment in the
Yeo 7 atlas is not uniform across the entire brain (23). In particular, the bound-
aries between networks have low confidences. We therefore set a threshold
confidence (threshold 0.3), and all electrodes below that threshold were dis-
carded from further analysis.

Clustering Analysis. The time to the first peak in the evoked response for each
time series (mean across trials) was used as the figure of merit for connectivity
between the stimulated electrodes and the recorded electrodes. There were
two benefits of this compared with using the strength of the signal. First,
there was only a very weak dependence from the Euclidian distance between
the pairs of electrodes (SI Appendix, Fig. S5) whereas the strength of the signal
is strongly dependent on the distance. This therefore minimizes the effects of
distance between electrodes. Second, this method detects the presence of an
N1 peak. The time to first peak therefore is a measure of the directional con-
nectivity between the two regions. The time to peak was concatenated across
all mean time series from all subjects and then clustered using a k-means algo-
rithm using the squared time difference as the distance metric to find two to
seven clusters.

Permutation Testing. To determine the network signature of each cluster, we
used a hierarchical bootstrap method. We compared the frequency of each
pair of networks with a null distribution generated by permutations. The
directionality of signal propagation was maintained when calculating the fre-
quencies, so a different frequency was calculated for stimulating network A
and measuring network B from the frequency calculated for stimulating net-
work B and measuring network A. The permutations were generated at the
subject level and then combined at the group level to account for the hierar-
chy of the data at the subject level. The network identities of all the time series
were shuffled and the frequency of every directed network pair was calcu-
lated for each cluster. This was repeated for 100,000 permutations. Network
connection pair frequencies for the true network assignments which were
more extreme than the highest 0.5% from the permutation frequency distri-
bution were taken to be significant. This approach identifies the directional
connections among the networks in each cluster for which we could reject the
null hypothesis.

GradCPT Task. Out of the 29 subjects who underwent CCEP procedures, 18
subjects additionally performed the gradCPT (17), administered in three to
seven runs, each lasting 6 or 8 min, as described previously (18). The task was
administered at bedside via a laptop running Windows 8.1. Stimuli were pre-
sented using Psychophysics Toolbox in Matlab R2016b (MathWorks).
Transistor–transistor logic pulses were sent to an empty channel on the elec-
troencephalography (EEG) montage tomark the onset times of each stimulus.
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In the gradCPT, grayscale visual images of either city or mountain scenes
gradually transitioned from one to another for the duration of the task. Each
transition lasted 800 ms, with image coherence gradually increasing at the
trial onset and then decreasing toward the trial end. Scene categories were
presented randomly at a rate of either 10mountain and 90% city or 25moun-
tain and 75% city (10 unique images, respectively, for each category). The
order of these images was randomized during each run. Participants were
instructed to press the space bar on the laptop when they noticed a city
appearing but to withhold response when they noticed a mountain appear-
ing. Participants performed with their dominant hand, except in situations
where there was discomfort of the dominant hand.

GradCPT Intracranial EEG Data Preprocessing. The gradCPT intracranial EEG
(iEEG) data were preprocessed with a previously established pipeline (20).
Notch filtering was performed to attenuate powerline noise at 50 Hz and its
harmonics (zero-phase, third-order, Butterworth filter with a band stop
between 47 and 53, 97 and 103, and 147 and 153 Hz). Signals were then rere-
ferenced from each channel to the common average signal across all channels,
with the channels excluded from the common average if they met one of the
following criteria: 1) showed pathological activity during clinical monitoring
(as noted by a neurologist); 2) were manually labeled as outliers based on
visual inspection of power spectra; 3) had a variance greater or lesser than five
times the median variance across all channels; or 4) had greater than three
times the median number of spikes across all channels, with spikes defined as
100-μV changes between successive samples. We performed time–frequency
decomposition using a Morlet wavelet transform with frequency bands log-
spaced between 1 and 170 Hz (38 total values). For each frequency band, we
rescaled each time sample by the log ratio of the whole run’s power ampli-
tude time series (i.e., to account for band-specific 1/f decline of the power
spectrum). Subsequently, power amplitude was averaged within the HFB (70-
to 170-Hz) range, and minimal temporal smoothing was applied with a 50-ms
Gaussian kernel.

Time-to-Peak Analysis of Task-Evoked HFB Responses. We computed the time
to peak (TTP) of HFB responses to mountain (target) trials in the gradCPT for
electrodes that were defined as “task-responsive.” This analysis was limited to
electrodes that were included in the CCEP analyses. Task-responsive channels
were defined based on mountain (i.e., target)-evoked HFB responses during
correct omission trials (withholding a button press when a target stimulus
appears) (20). This was based on a decreased target-evoked HFB response for

default-mode network (DMN) sites and an increased target-evoked response
for non-DMN sites. To define task-responsive electrodes, we used a nonpara-
metric cluster-based permutation test (30) to compare HFB power amplitude
during target relative to baseline trials (combining trials across all task runs
within each participant). The cluster-based permutation test was based on the
time window of 0 to +1,500 ms relative to trial onset (i.e., beginning of stimu-
lus fading in). An electrode was considered task-responsive if it showed a sig-
nificant temporal cluster at the level of Monte Carlo one-tailed (decrease for
DMN, increase for non-DMN) P < 0.001 (uncorrected for multiple compari-
sons). For all electrode pairs thatwere included in the CCEP analysis, we identi-
fied those in which both electrodes were task-responsive. For each of those
pairs, we computed TTP as the minimum (DMN electrodes) or maximum (non-
DMN electrodes) peak time point of HFB power amplitude (averaged across
trials) within a time window ranging from +200 to +1,500 ms after trial
onset (18).

We then computed the absolute TTP difference for each electrode pair.
The electrode pairs were then grouped into internetwork and intranetwork
pairs. The resulting internetwork and intranetwork TTP probability distribu-
tions were compared using the two-sided Wilcoxon rank-sum test. This tests
the null hypothesis that the two samples come from distributions with equal
medians against the alternative hypothesis that they are not. In order to
adjust for the hierarchical nature of the data, we also implemented a linear
mixed-effect model adjusting for distance between contacts and whether the
contacts were within the same network and allowed for an independent ran-
dom slope and intercept at the patient level. This model included fixed effects
for distance between contacts and whether the contacts were within the
same network as well as uncorrelated random effects for intercept, distance,
and intranetwork status grouped by the patient ID.

Data Availability. The entire dataset used in this publication has been depos-
ited in FigShare (https://figshare.com/projects/Temporal_Order_of_Signal_Pro-
pagation_Within_and_Across_Intrinsic_Brain_Networks/123283).
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