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Previous neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the
brain; however, these were not powered to explore the exact timing of events at the subsecond scale combined with a precise
anatomical source of information at the level of individual brains. As a result, we know little about the order of engagement across
different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic
processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using the intracranial electroenceph-
alography. Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. In each activated brain
region, we found juxtaposed neuronal populations preferentially responsive to either the target or control conditions, arranged in an
anatomically orderly manner. Notably, an orderly successive activation of a set of brain regions—anatomically consistent across
subjects—was observed in individual brains. The temporal order of activations across these sites was replicable across subjects
and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between
regions, suggesting that the information is partially leaked or transformed along the processing chain. Our study complements prior
imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing.
Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems.
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Significance Statement

Our study elucidates the spatiotemporal dynamics and anatomical specificity of brain activations across >10,000 sites during
arithmetic tasks, as captured by intracranial EEG. We discovered an orderly, successive activation of the brain regions, con-
sistent across individuals, and a decrease in functional connectivity as a function of temporal distance between regions. Our
findings provide unprecedented insights into the sequence of cognitive processing and regional interactions, offering a novel
perspective for enhancing computational models of cognitive symbolic systems.

Introduction
Past studies in humans and nonhuman primates have provided
an important information about regional activations during
arithmetic processing (Brannon, 2006; Ansari, 2008; Cantlon
et al., 2009; Butterworth and Walsh, 2011; Dehaene, 2011;
Cohen Kadosh and Dowker, 2015; Nieder, 2019; Knops, 2020).
More specifically, neuropsychological and neuroimaging studies

have uncovered a static and coarse functional map of activations
in the brain, which in the context of arithmetic processing,
includes a network of regions within the posterior parietal cortex
(PPC), presumably engaged in numerosity representation and
manipulation (Dehaene et al., 1999; Piazza et al., 2007; Knops
et al., 2009; Holloway and Ansari, 2010; Harvey et al., 2013;
Kanjlia et al., 2016), and the ventral temporal cortex (VTC), pre-
sumably involved in the recognition of numerical symbols (Shum
et al., 2013; Grotheer et al., 2016a,b; Amalric and Dehaene, 2017;
Grotheer et al., 2018). The engaged PPC sites are further grouped
into at least three functionally diverse subregions (Dehaene et al.,
2003): the horizontal portion of the intraparietal sulcus (IPS),
which is strongly engaged during number comparison (Piazza
et al., 2007) and calculation (De Smedt et al., 2011); the superior
parietal lobe (SPL), which hosts a topographical representation of
quantities (Harvey et al., 2017) and is involved in visuospatial
processing and orienting of attention during calculation
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(Knops et al., 2009; Mathieu et al., 2017; Liu et al., 2021); and the
left angular gyrus, which is suggested to be involved in verbal
number processing such as multiplication fact retrieval
(Delazer et al., 2003; Grabner et al., 2009; see also Grabner
et al., 2013; Pinheiro-Chagas et al., 2022). Performing a simple
arithmetic calculation would therefore depend on an interplay
between different subregions of the PPC, between PPC and
VTC, and between these regions and other auxiliary brain
regions that are required for performing executive functions
and working memory (e.g., dorsolateral prefrontal cortex),
declarative and semantic memory formation (e.g., medial tempo-
ral lobe), and the allocation of attentional resources for goal-
directed problem-solving (e.g., various prefrontal cortical
regions).

While we have learned a great deal of information from the
extant evidence, our knowledge has been primarily based on
the group-averaged correlational data that could not simulta-
neously resolve the spatial and temporal dynamics of the activity
at the individual brain level. As a result, the precise anatomical
location, temporal dynamics of activity, and how these regions
collaboratively work together to perform calculations are still
poorly understood. This is partially due to the low temporal
resolution and low signal-to-noise ratio of signals obtained
with noninvasive neuroimaging methods. While the lower
temporal resolution of fMRI precludes assessments of fast spatio-
temporal dynamics across these sites, the lower signal-to-noise
ratio of M/EEG often requires a group-based analysis that blurs
the anatomical precision of the data at the single-subject level.

In the past few years, studies using intracranial electroenceph-
alography (iEEG) have provided several novel findings that are
advancing our understanding of the spatiotemporal dynamics
of processing in the human brain. While the iEEG method is
not suited for fine-grained studies of neuronal activity at the local
level, it is a remarkable tool for the simultaneous recording of
averaged neuronal population activities across remote regions
of the brain (Parvizi and Kastner, 2018). Using this method,
our group has confirmed the existence of a specialized area in
the posterior inferior temporal gyrus (pITG) in the human
VTC that selectively responds to numerals as compared with
other morphometrically and semantically similar symbols
(Shum et al., 2013). Subsequent studies have shown that the
pITG sites are functionally connected with neuronal populations
around the IPS, found to be associated with magnitude represen-
tation and manipulation (Daitch et al., 2016; Pinheiro-Chagas
et al., 2018), and modulated by arithmetic problem size
(Kanjlia et al., 2016; Pinheiro-Chagas et al., 2018). A further
study demonstrated that responses in the pITG during calcula-
tion are format independent (i.e., equal responses for numerals
and number words; Baek et al., 2018). These results have sug-
gested that the pITG may be involved in functions beyond digit
recognition. Although our recent iEEG studies provided precise
information about the anatomical location and temporal dynam-
ics of activity between the VTC and IPS hubs of activity, they
were only focused on a single pair of brain regions and relied
on observations in a small number of subjects—due to the rarity
of recordings in these areas of the brain.

In the current study, we leveraged the power of multisite iEEG
recordings across a relatively large number of human subjects.
Crucially, several of our subjects had simultaneous recordings
across the key regions of the brain known to be involved during
the mathematical processing. This allowed us to investigate the
spatiotemporal dynamics of arithmetic processing at the single-
subject level and with single-trial precision. We had several

predictions based on previous studies. Based on the neuropsy-
chological data showing the heterogeneity of behavioral deficits
following focal (Baldo and Dronkers, 2007) and network brain
lesions (Gorno-Tempini et al., 2011), we hypothesized the exis-
tence of juxtaposed neuronal populations with preferential
responses for math and non-math tasks. Extending our prior
work to a larger number of regions (Daitch et al., 2016;
Pinheiro-Chagas et al., 2018; Baek et al., 2018), we predicted
that sites with a high degree of preferential response to math pro-
cessing will show a particular signature of activity profile, which
can be observed as a sharp increase in activation following the
calculation stage of the task. Complementarily, we expected to
observe an antagonistic pattern of deactivation across regions
of the default mode network at a similar processing stage, which
has never been demonstrated. Lastly, expanding our previous
findings with just a few electrodes (Daitch et al., 2016), we
predicted the existence of a canonical temporal order of activa-
tions along the math network, following regions in the ventral
temporal, lateral parietal, and dorsolateral prefrontal cortices.
In addition to these specific hypotheses, our study was poised
to gain novel insights into the precise anatomical organization
within individual brains, the temporal dynamics, and the func-
tional connectivity during arithmetic calculations. Our findings
have the potential to serve as a foundational platform for devel-
oping mechanistic computational models of human-unique
cognitive abilities, thus greatly advancing our understanding of
mathematical cognition.

Materials and Methods
Participants. We recorded intracranial electroencephalography

(iEEG) data from 85 human subjects (52% females; Extended Data
Fig. 1-1, Subject’s demographics, basic neuropsychological information,
and task completion) with medically refractory epilepsy who were
implanted with intracranial electrodes as a part of their presurgical eval-
uation at Stanford University. Each subject provided an informed con-
sent to participate in the study, which was approved by the Stanford
Institutional Review Board. The subjects were monitored for ∼6–10 d
following surgery, during which they participated in our study. The elec-
trode location and number were determined by the neurosurgeons for
clinical needs. The data from 16 subjects of the present cohort was
already published previously (Shum et al., 2013; Daitch et al., 2016;
Hermes et al., 2017; Baek et al., 2018; Pinheiro-Chagas et al., 2018).

Electrophysiology recording. A total of 39 cases were implanted with
subdural grids (ECoG), 45 with depth electrodes (stereoelectroencepha-
lography, sEEG), and 3 with both sEEG and ECoG, whose locations were
determined purely for clinical reasons. For depth electrodes
(stereo-EEG), the diameter was 0.86 mm, the height was 2.29 mm, and
the distance between the centers of two adjacent electrodes was 5 mm.
For subdural grids and strips (ECoG) electrodes, the diameter was usu-
ally 2.3 mm with a center-to-center interelectrode spacing of 10 mm,
7 mm, or 5 mm for higher density arrays. All electrodes were from
AdTech Medical Instruments.

Data acquisition and analysis. iEEG data were recorded using two
multichannel recording system: Tucker David Technologies (band-
pass filter of 0.5–300 Hz and sampling rate of 1,525.88 Hz or 3,051.76
Hz) or Nihon Kohden (sampling rate 1,000 Hz). After data collection,
we implemented a preprocessing pipeline to minimize noise in the elec-
trophysiological signals. Initially, signals above 1,000 Hz were down-
sampled to 1,000 Hz. We then applied notch filters at 60, 120, and
180 Hz to the downsampled signals to remove electrical line noise.
Subsequently, we identified and excluded the noisy channels from fur-
ther analyses. These were defined as channels with raw amplitude
exceeding five times or falling below one-fifth of the median raw ampli-
tude across all channels or those exhibiting more than three times the

2 • J. Neurosci., April 24, 2024 • 44(17):e2118222024 Pinheiro-Chagas et al. • Spatiotemporal Dynamics of Arithmetic Processing

https://doi.org/10.1523/JNEUROSCI.2118-22.2024.f1-1


median number of spikes across all channels (spikes were defined as
jumps between consecutive data points >80 μV). We also excluded elec-
trodes whose overall power was five or more standard deviations above
or below the mean power across channels and those whose power spec-
trum deviated from the normal 1/f power spectrum, based on visual
inspection. Electrodes marked by the clinical team as having an epilepti-
form activity were also excluded from subsequent analyses, along with
the noisy electrodes. All nonexcluded channels were then notch filtered
at 60 Hz and harmonics to remove the electric interference and then
rereferenced to the mean of the filtered signals of the nonexcluded chan-
nels. The rereferenced signal at each electrode was then bandpass filtered
between 70 and 180 Hz (high-frequency broadband, HFB) using sequen-
tial 10 Hz width bandpass windows (70–80 Hz, 80–90 Hz, etc.), using
two-way, zero-lag, finite impulse response filters. The instantaneous
amplitude of each band-limited signal was computed by taking
the modulus of the Hilbert transform signal. The amplitude of each
10 Hz band signal was normalized by its own mean, and then these nor-
malized amplitude time series were averaged together, yielding a single
amplitude time course for the HFB band. The data were analyzed using
the Matlab R2020_b with a custom-made pipeline: https://github.com/
pinheirochagas/lbcn_preproc.

All analyses were conducted at the level of individual electrodes, and a
subset [response onset latency (ROL), functional connectivity, and fea-
ture modulation] were done at the single-trial level. The group analyses
were conducted at the second level, incorporating the information com-
puted at the trial and electrode levels. This approach allowed us to main-
tain the high resolution of our data while also enabling us to draw
broader conclusions across subjects and regions. Of note, while paramet-
ric tests are widely used in the analysis of electrophysiological data
(Kiebel et al., 2005), we used nonparametric tests when we analyzed
the data across electrodes in case the condition of independence across
electrodes and ROIs could not be fully met.

Electrode localization. We used the iELVis toolbox in order to localize
electrodes (Groppe et al., 2017). All subjects had preimplantation
T1-weighted MRI and postimplantation CT scans following the electrode
implantation. T1-weighted MRI scan was used to generate cortical surface
and subcortical segmentation using recon-all command of the FreeSurfer
v6.0.0 (Fischl et al., 1999). The postimplant CT scanwas aligned to the pre-
implantMRI using the flirt from the Oxford Centre for Functional MRI of
the Brain Software Library (Jenkinson and Smith, 2001; Jenkinson et al.,
2002) or using bbregister from FreeSurfer (Greve and Fischl, 2009) to
get the best results. We then manually labeled each electrode on the
T1-registered CT image using the BioImage Suite (Papademetris et al.,
2006). For subdural grid and strip electrodes (but not for depth electrodes),
we used one of two brainshift correctionmethods in order to get the closest
results to the intraoperative pictures (Dykstra et al., 2012; Yang et al.,
2012). To combine data across subjects, electrodes were meticulously
determined by a highly trained neuroanatomist, J.P., who considered the
anatomical landmarks and morphology of individual brains.
Importantly, the neuroanatomist was completely blind to the results.

Functional preferentiality. Our analyses were focused on task-
induced changes in the HFB activity (70–180 Hz), due to its high
correlation with local spiking activity and the fMRI BOLD signal
(Logothetis et al., 2001; Ray and Maunsell, 2011). Additionally, the HFB
signal is proven to have sufficient anatomical resolution to capture inde-
pendent activity from each electrode, even when multiple electrodes are
located within the same grid or brain region (Ray and Maunsell, 2011;
Dubey and Ray, 2019). This is based on the understanding that the HFB
signal reflects localized neural processes and can vary significantly across
closely spaced electrodes. However, we acknowledge that this is a complex
issue and that some degree of spatial autocorrelation may exist in the data
due to shared inputs or local network effects (Parvizi and Kastner, 2018).

We classified all sites based on their relative responses during target
(arithmetic) versus control (memory) trials. Math-involved sites were
defined as those with a significantly different HFB activity during arith-
metic trials compared with the prestimulus baseline period (see below).
If the trial HFB activity was higher than baseline, we considered the site

math active, and if the trial HFB activity was lower than baseline, we con-
sidered the site math deactivated. Math preferential sites were defined as
those that satisfied the three criteria: (1) significantly higher trial HFB
compared with baseline; (2) significantly greater trial HFB activity during
math compared with the non-math condition (autobiographical memory/
language); and (3) no significant difference in trial HFB activity during the
non-math condition as compared with baseline. Math and non-math
active sites were defined as those with significantly higher trial HFB com-
pared with baseline in both math and non-math conditions and with no
significant difference in the trial HFB activity betweenmath and non-math
conditions. Non-math involved, non-math active, non-math deactivated,
and non-math preferential were classified using equivalent criteria. The
trial and baseline periods for the comparisons used in the simultaneous
calculation task were 100–1,000 ms following the stimulus presentation
and−200 to 0 ms before stimulus presentation, respectively. The trial win-
dow was selected not only because all necessary information for perform-
ing the calculation (in the math condition) or retrieving the memory (in
the non-math condition) is presented simultaneously but also because
this 1 s window is where the majority of the signal was concentrated.
For the sequential calculation task, the trial and baseline periods were
2,100–4,300 ms following the first stimulus and −500 to 0 ms before the
first stimulus, respectively.

On the other hand, the sequential calculation task has a different
structure with the information presented in a staggered manner.
Consequently, the trial window for this task is longer (2,200 ms) and
begins 100 ms after the presentation of the third stimulus. This timing
allows subjects to gather all the necessary information before starting
the calculation or memory retrieval process. The varying baseline dura-
tions were chosen based on the intertrial interval, which was 200 ms for
the simultaneous task and 500 ms for the sequential task. This procedure
ensured that the baseline period did not overlap with any task stimuli.

Note that this is not circular to the response profile findings
(Figs. 2. 3), since the analysis comparing the HFB within different stages
of calculation was performed post hoc to the functional preferentiality
analysis. Unpaired permutation tests were run to test for differences in
HFB power between different task conditions, while paired permutation
tests were run to test for a difference in HFB power between a task con-
dition and baseline. All p values in all analyses were FDR corrected by the
total number of sites within each subject, using the procedure introduced
by Benjamini and Hochberg (1995).

ROL analysis. Based on our previously published methods (Schrouff
et al., 2018), we implemented a method to estimate the onset of the
task-induced trial-by-trial HFB response at each site.We first normalized
the signal to the peak amplitude and applied a sliding windowwith 30 ms
bins with 28 ms overlap. We then calculated the signal average and stan-
dard deviation in a baseline time window of [−200, 0] ms before onset
across trials in each condition. We then identified 25 consecutive bins
in which the average HFB power z score was one standard deviation
above the baseline average. The earliest time point of the first bin in
this sequence was marked as the onset for a specific trial. All analyses
were done on a trial-by-trial basis. Sites in which the ROL could not
be calculated for >50% of the trials were discarded from the analysis.

Cross-correlation. For each pair of electrodes, we ran a cross-
correlation analysis (function xcorr in Matlab) with max lag of
[−2, 2] s from the stimulus onset in the simultaneous calculation task.
Next, we randomly shuffled the trial order and recalculated the cross-
correlation. We repeated this process 2,000 times and subtracted the
averaged permuted shuffled trial order from the averaged Pearson’s r
trace from the preserved trial order. If two regions are functionally con-
nected, the difference between ordered minus shuffled trials (Δrpeak)
should be high and positive. And if one region A is leading and another
region B is lagging, the lag of the peak (Δrlag) should be positive.

Simultaneous calculation task. The subjects were presented with
visual stimuli that were either math statements (arithmetic calculations,
i.e., “48+ 5= 57”) or non-math statements (autobiographical memory, i.e.,
“I ate fruit yesterday”). The subjects were instructed to make true/false

Pinheiro-Chagas et al. • Spatiotemporal Dynamics of Arithmetic Processing J. Neurosci., April 24, 2024 • 44(17):e2118222024 • 3

https://github.com/pinheirochagas/lbcn_preproc
https://github.com/pinheirochagas/lbcn_preproc
https://github.com/pinheirochagas/lbcn_preproc


judgments about each statement or equation by pressing two keypad but-
tons. Each arithmetic statement (addition) was always composed of a two-
digit operand (ranging from 10 to 87), a single-digit operand (ranging
from 1 to 9), and a two-digit proposed result. In half of the trials, the pro-
posed result was correct. The task was self-paced, but the subjects had
maximumof 15 s tomake these judgments. A 200 ms intertrial period sep-
arated the trials. The trials were interspersed with fixation periods (5 s),
during which the subjects were simply asked to fixate at a cross-hair in
the center of the screen. The subjects completed approximately two blocks.
Each block had 80 trials (40 math and 40 non-math, randomly sampled
from the stimuli list), which lasted ∼15 min. Stimuli were not repeated
across blocks. Within each block, math and non-math statements were
presented in a randomized order (Extended Data Fig. 1-2, Stimuli list
for the simultaneous calculation task for the full list of stimuli).

Sequential calculation task. The subjects were presented with a series
of visual stimuli that were eithermath statements or non-math statements,
like the ones presented in the simultaneous calculation task. The subjects
were instructed to make true/false judgments about each statement or
equation by pressing two keypad buttons. Each stimulus within a state-
ment was presented one numeral/symbol/word at a time (i.e., “1” “+”
“2” “=” “3”; “I” “ate” “fruit” “yesterday”). Half of the math trials were pre-
sented as math symbols (“1+ 2= 3”) and half using words (“one plus two
equals three”). In half of the math trials, the proposed result was correct.
Each stimulus was presented for 500 ms with a 500 ms interstimulus
period. After the last stimulus was presented, the subjects had 5 s to
respond. A 500 ms of intertrial period separated the trials. The subjects
completed between two and four blocks. Each block consisted of 48 trials
(24 math and 24 non-math, randomly sampled from the stimuli list), last-
ing ∼10 min. Stimuli were not repeated across blocks. Within each block,
math and non-math statements were presented in a randomized order. See
ExtendedData Figure 1-2, Stimuli list for the simultaneous calculation task
for the full list of stimuli.

We chose the distinctionmath versus non-math, because for this paper
we were not particularly focused on the precise cognitive functions under-
lying the non-math condition beyond their lack of involvement in math; a
similar terminology has been adopted in our recent studies. The non-math
statements essentially represent a reading task with autobiographical mem-
ory content (Amalric and Dehaene, 2016, 2017).

Results
Subjects and recording electrodes
We recruited 85 subjects with focal epilepsy implanted with intra-
cranial electrodes as part of their presurgical evaluation. The
electrodes were implanted in these subjects solely for clinical rea-
sons, and the subjects were monitored in private hospital rooms
for 1–2 weeks. Our research studies were performed while the sub-
jects were comfortably resting in their hospital bed during their
clinicalmonitoring. A total of 10,076 recording sites were included:
56% in the left hemisphere and 56% (ECoG) throughout the last 12
years. The subjects performed simple arithmetic sums presented in
two different methods: in the first experiment, also referred to as
Task 1 or “simultaneous calculation,” the subjects judged the accu-
racy of full math statements (arithmetic equations, e.g., “16 + 8=
22”) or full non-math statements (autobiographical memory,
e.g., “Today, I had a beer”) that appeared in randomized order
on a computer screen. In the second task, that is, Task 2, or
“sequential calculation,” the subjects viewed similar statements
but with items presented serially or one at a time (e.g., “Today,”
“I” “had” “a beer” or “16”, “+”, “8”, “=”, “22”; Fig. 1a).

Behavioral performance
The subjects demonstratedhigh performance in themath andnon-
math conditions for both the simultaneous and sequential tasks.
We classified trials as incorrectwhen subjects got the answerwrong
or when they had extreme response times (RTs) (<200 ms or >10 s

for the simultaneous and >5 s for the sequential task math condi-
tion), since that suggested either a lack of attention or engagement.
For the simultaneous math condition, the subjects accurately
responded to 84.9% of the trials (SD, 13.11%), with a mean RT,
3,723 ms, and SD, 1,283 ms (RT calculated from onset of full state-
ment). For the sequential math condition, the subjects accurately
responded to 83.8% of the trials (SD, 8.4%), with a mean RT,
1,332 ms, and SD, 495 ms (RT calculated from the onset of the
last item, i.e., “22” in “16 + 8= 22”). In the sequential non-math
condition, since these involved subjective questions, accuracy
could not be assessed. However, the RT for the simultaneous non-
math condition was mean, 2,635, and SD, 956, and for the sequen-
tial non-math condition, it was mean, 1,652, and SD, 471. A statis-
tical analysis revealed significant RT differences between the math
and non-math conditions across both tasks. In simultaneous tasks,
responseswere slower inmath condition by 1,088 ms, t(68) = 5.65, p
< 0.0001. In contrast, the subjects were faster for the math condi-
tion in the sequential tasks by 320 ms, t(53) = 3.44, p< 0.001.
Incorrect trials were excluded from all further analyses.

To model RTs, we calculated stepwise regression models for
each participant with several arithmetic features that are classi-
cally associated with problem difficulty as predictors. Take a pro-
posed problem like “7 + 35 = 44”: the min operand is the smallest
operand (“7”); the max operand is the largest operand (“35”); the
cross-decade is true, since the correct result “42” lies on the dec-
ade “40” that is different from the one of the max operand which
is “30”; the magnitude order is either smaller operand + larger
operand or larger operand + smaller operand (which was only
possible to model in the simultaneous calculation task, because
all stimuli of the sequential calculation task were larger oper-
and + smaller operand); the format is a digit (in the sequential
calculation task, it can also be number words, such as “seven
plus thirty five equals forty four”); and the absolute deviant is
the modulus of the difference between the correct (“42”) and pro-
posed (“44”) results, which in this case is “2”. In the simultaneous
calculation task, results revealed that the cross-decade variable
was overall the best predictor of RT (significant in 46 subjects,
70%), followed by min operand (significant in 36 subjects,
55%), absolute deviant (significant in 28 subjects, 42%), max
operand (significant in 11 subjects, 17%), and magnitude order
(significant in 9 subjects, 14%). In the sequential calculation
task, we found that the best predictor of RT was the min operand
(significant in 17 subjects, 65%), followed by format (significant
in 15 subjects, 58%), absolute deviant (significant in 12 subjects,
46%), cross-decade (significant in five subjects, 19%), and max
operand (significant in three subjects, 12%).

These behavioral results corroborate previous findings using a
variety of paradigms, such as verification, production, and num-
ber to position, in which the min operand and cross-decade are
consistently found to be good predictors of RT (Groen and
Parkman, 1972; Barrouillet and Thevenot, 2013; Uittenhove
et al., 2016; Pinheiro-Chagas et al., 2017), thus providing a con-
vergent evidence that these arithmetic features are robust and
reproducible indices of problem difficulty.

Functional anatomical organization
To investigate which sites were engaged during the math condi-
tion, we calculated the band-limited power of signals that
recorded in the HFB (70–180 Hz, normalized to the prestimulus
baseline) as a reliable measure of “regional engagement”—as
reviewed previously (Parvizi and Kastner, 2018).

By comparing the HFB activity during the calculation stage
against the prestimulus baseline period in all 10,076 recording
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sites across 85 subjects, we identified that 4,764 sites (45%) were
significantly involved during arithmetic calculations (Fig. 1c).
These sites were distributed throughout the entire mantle of
the cerebral cortex in both hemispheres. Out of these involved
sites, 3,811 (80%) were significantly activated (i.e., poststimuli
activity increased as compared with the baseline period; see
Materials and Methods), and 953 (20%) were significantly deac-
tivated (i.e., poststimuli activity decreased as compared with the
baseline period; Fig. 4).

As noted, the main goal of the current study was to study the
dynamics of engagement and interaction across neuronal popu-
lations located in different regions of the brain during arithmetic
processing. To address this aim, we focused our analysis on a
selected set of brain regions that displayed the highest degree of
activations during the arithmetic trials. In line with neuroimaging
studies, we identified the sites in each subject that exhibited sign-
ificant activations (i.e., HFB responses) compared with baseline

and higher activations during the math condition compared
with non-math condition. It is important to note that this does
not imply that the selected sites were engaged strictly in arith-
metic computation per se. Instead, this subtractive approach
(activity during math compared with activity during non-math
control condition) was used to make our analyses similar to the
ones employed in the majority of neuroimaging studies and to
identify brain regions where peaks of activations are found.

Across all subjects, we identified 439 sites (9.21%, in 67 sub-
jects) with preferential activity during math as compared with
the non-math condition (Fig. 1d). The t scores from the compar-
ison of induced HFB power during math compared with those
during non-math conditions were highly correlated when calcu-
lated from Task 1 and Task 2 (i.e., simultaneous vs sequential cal-
culation; r= 0.55; p < 0.001; df = 1,848; n= 15 subjects; 1,849
recording sites; Fig. 1b). This clearly suggests that the preferential
responses in these sites were driven by the task content (i.e.,

Figure 1. a, Design of the simultaneous and sequential calculation tasks. b, Correlation of the T value from the comparison between math and non-math averaged activity in each site from all
the 15 subjects who completed both tasks. c, Electrode coverage combining all 10,076 recording sites across 85 subjects plotted on a common brain (fsaverage). Each black dot represents one
electrode. Most electrodes (62%) were ECoG and located on the left hemisphere (59%). d, Selectivity map for math and non-math (autobiographical memory/language) across all electrodes
during the simultaneous and sequential calculation tasks combined. Electrodes are colored by selectivity: math preferential in red, non-math preferential in blue, and sites equally activated for
both math and non-math in green. See Extended Data Figures 1-1–1-8.
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arithmetic calculation) rather than by the task structure or
demand.

Math preferential sites could be dissociated from the set of
anatomical regions with preferential responses during non-math
(N= 760 in 65 subjects). The anatomical location of the sites with
preferential activation during arithmetic processing was remark-
ably consistent across task formats (i.e., in both simultaneous and
sequential tasks) and across individual brains. We selected nine
regions of interest for a deeper analysis based on the following
criteria: (1) regions that have been implicated in mathematical
processing in previous fMRI and neuropsychological studies
and (2) regions that contained a substantial number of electrodes
(i.e., n > 10), prioritizing the simultaneous calculation task, given
the significant coverage and emphasis on this task in our study.
We acknowledge that this selection process may seem arbitrary,
and we understand that despite the extensive nature of our data-
base, it is not feasible to investigate all brain regions with the
same level of precision. The selected ROIs were as follows: fusi-
form gyrus (FG); inferior temporal gyrus (ITG); IPS; SPL; supra-
marginal gyrus (SMG); inferior (IFG), middle (MFG), and
superior frontal gyrus (SFG); and medial superior frontal gyrus
(mSFG; Fig. 2). In each of these broad regions, we could find
both math and non-math–preferential neuronal populations.
However, consistent anatomical relationships could be observed
between math and non-math activated sites. To confirm that, we
conducted Spearman’s rank correlation between the T value of
the comparison between math and non-math and the electrode’s
coordinate in the native individual anatomical space, using the
coordinate axis that best captured this relationship. We found

that functional preference was organized in these regions. In
the FG, math-responsive sites were located primarily in the right
hemisphere, while non-math–activated sites were located pre-
dominantly in the left hemisphere. Moreover, the math-activated
sites were located more lateral to non-math sites in the ITG; more
posterior to non-math sites in the SPL, SFG, and mSFG
(although the correlation for mSFG did not survive the FDR cor-
rection for multiple comparisons); more anterior to non-math
sites in the IPS, MFG, and IFG; and more dorsal to non-math
sites in the SMG (Fig. 2).

Profile of activity across anatomical regions
By leveraging the temporal resolution and the high signal-
to-noise ratio of the iEEG signal, we explored the pattern of elec-
trophysiological changes within a given neuronal population
from the time of stimulus onset to the time of subject’s responses.
During Task 1, when arithmetic equations were presented at
once, sites with preferential responses during the arithmetic con-
dition exhibited a similar profile of sustained responses. During
Task 2, in which the arithmetic stimuli were presented sequen-
tially, we discovered a stereotyped signature of activation across
sites. Neuronal population responses in math-preferential sites
were significantly higher after operand and response conditions
(e.g., “2” and “3” and “5” in “2 + 3 = 5”) as compared with arith-
metic operation symbols (e.g., “+” and “=” in “2 + 3 = 5”).
Interestingly, the activity induced by the second operand was
also significantly higher than the activity induced by the first
operand. This is noteworthy because after the first operand and
first operation symbol (e.g., “2” and “+”= in the above example),

Figure 2. Anatomical localization of the preferential sites in the main nine hubs of the math network, combining the simultaneous and sequential calculation tasks. The individual electrodes in the
brain are plotted in standard MNI coordinates, while in the scatterplots they are from the individual’s anatomical space. The scatterplots show the correlation between the t scores comparing math
versus non-math and the particular coordinate within each hub that best segregates between math and non-math preference in the native individual anatomical space. The correlation significance was
FDR corrected for multiple comparisons, considering the 36 comparisons (9 regions × 4 coordinate axes, left/right, medial/lateral, posterior/anterior, and inferior/superior). This anatomical relationship
may not be as clear once individual subject’s data are transferred to standard MNI space. FG, fusiform gyrus; ITG, inferior temporal gyrus; SMG, supramarginal gyrus; IPS, inferior parietal sulcus; SPL,
superior parietal lobe; IFG, inferior frontal gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; mSFG, medial superior frontal gyrus. See Extended Data Figures 1-4, 1-5, and 1-6.
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the brain is yet to be engaged in arithmetic processing. The brain
starts calculating when the second operand (in this case “3”) is
shown. The profile of activity in math-preferential sites was in
sharp contrast to the profile of non-preferential sites such as early
visual areas or sensory motor cortices (Fig. 3).

In parallel to activations during arithmetic processing, we
found sites that showed clear decreased activity during the math
condition (n= 275 across 46 subjects). That is, the HFB activity
was reduced significantly below the baseline period, in both simul-
taneous and sequential calculation tasks (Fig. 4). The deactivated
sites were also anatomically consistent across subjects and located
in the posteromedial cortex (n= 36%, 13.4%), medial temporal
gyrus (n= 37%, 13.4%), orbitofrontal cortex (n=20%, 7.2%),
SFG (n=15%, 5.4%), superior temporal sulcus (n=13%, 4.7%),
and the medial prefrontal cortex (n= 13%, 4.7%)—all of
which are known to be regions of the default mode network
(Yeo et al., 2011). Importantly, regions with decreased activity

for math also showed the strongest signal decreases after the
second operand at the same time that the math-preferential sites
showed the highest activations—possibly suggesting a synchro-
nous antagonistic relationship across the math-preferential and
math-deactivated sites.

Temporal order
We calculated the concentration of HFB signal throughout each
trial for each site with preferential math responses (n= 248,
across 48 subjects) in the math condition of the simultaneous
calculation task. Since the task was self-paced and trials had vary-
ing RTs within and across subjects, we normalized the HFB
power by the % RT at each single trial (i.e., calculating the HFB
power in the 0–100% time window of each trial). By comparing
the temporal profiles of average HFB concentration across sites
(Fig. 5b), a clear order of activation emerged: sites were “ignited”
in a successive order. Interestingly, the earlier activations did not

Figure 3. Profile of electrophysiological activity across the arithmetic network. a, Electrode localization of the main seven regions that show the strongest math selectivity in both simulta-
neous and sequential calculation tasks (inside the dotted line), as well as two control regions that show no math selectivity (generic visual activations in the lateral occipital cortex and motor
activations in the PCG). b, HFB time courses for the simultaneous and sequential calculation tasks. Shaded error bars indicate the standard error of the mean across electrodes. The timing of each
individual stimuli of the sequential calculation task are marked in the leftmost plot. IOG, inferior occipital gyrus; LOG, lateral occipital gyrus; PCG, precentral gyrus. See Movies 1 and 2.

Figure 4. Profile of electrophysiological activity of regions that were deactivated during math. a, Electrode localization of the main six regions that show the strongest math decreased activity
in both simultaneous and sequential calculation tasks. b, HFB time courses for the simultaneous and sequential calculation tasks. Shaded error bars indicate the standard error of the mean across
electrodes. The timing of each individual stimuli of the sequential calculation task are marked in the leftmost plot.
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cease when the next batch of sites were “turned on.” The earlier
sites continued their activity simultaneously with the later ones
until all sites ended their activity as the subject responded
(Fig. 5b,c).

Next, wemeasured the precise time of onset of HFB activations
(ROL) at each site. At the group level, we observed a very clear lin-
ear trend. Activations start in the temporal lobe sites and then pari-
etal sites before the frontal areas are engaged (Fig. 5b,c). This was
confirmed with Spearman’s rank correlation (rs = 0.52; p< 0.001).
In this analysis, we sought to statistically demonstrate a linear trend
in the data after sorting the regions by mean ROL. Note that the
purpose of this analysis was not to establish the order itself (which
would be circular) but rather to confirm the presence of a statisti-
cally significant linear trend in the sorted data. To verify this
finding at the single subject level, we found 16 subjects who had
simultaneous recordings in at least three of the ROIs. For each par-
ticipant, the order of ROIs was determined based on the group
average, employing a leave-one-out strategy to circumvent a poten-
tial bias. This entailed recalculating the group mean for the ROI
sequence while excluding the data of the individual participant
under review. Such an approach ensured that the assessment
of temporal order consistency was not compromised by the influ-
ence of an individual’s data on the group analysis. Notably, the
application of this method revealed a consistent ROI sequence
information across all available ROIs in 15 of 16 (94%) cases.
When excluding one single subject’s data, the temporal sequence
was changed only for the last pair of ROIs, namely, mSFG preced-
ing the SFG. In other words, the sequence of other ROIs remained
exactly the same even with inclusion of this subject. It is crucial to
clarify that this single subject’s data was not removed from the
group dataset in its entirety. The exclusion was only specific to
the analysis affected by the unusual ordering, with all other analyt-
ical aspects retaining this participant’s information. This individu-
al’s data contributed to the 15 other iterations of leave-one-out
procedure, reinforcing the robustness and validity of the temporal

order consistency reported across our study cohort. Next, we fit a
linear regression model on the ROLs as a function of sorted ROIs.
We found that the slopes of temporal order within each individual
were all positive and remarkably consistent (mean, 13.3 ms; SD,
11.3 ms; R2 of the linear fit ranged from 0.35 to 0.99; mean, 0.66;
SD, 0.24) irrespective of the particular set of simultaneous ROIs
recorded (Fig. 5a).

In order to probe if the temporal sequence of activations could
be captured at the single-trial level, which would reflect coordi-
nated activity across regions, we selected a single subject who
had simultaneous coverage in not only ITG, IPS, and mSFG
but also early visual areas [lateral occipital gyrus (LOG), posterior
SPL (pSPL), as well as the precentral gyrus (PCG)]. For each elec-
trode pair, we ran a cross-correlation analysis and estimated the
indices of functional connectivity (Δrpeak) and temporal delay
(Δrlag; see Materials and Methods). If two regions are synchro-
nized, the Δrpeak should be high and positive, and if one region
A is leading and another region B is lagging, Δrlag should be pos-
itive. As seen in Figure 6a, the early visual region (LOG), despite
being the first in the cascade of activations and despite showing a
significantly high initial response for arithmetic stimuli, does not
show synchronized responses with downstream regions.
However, the arithmetic ROI sites of ITG, IPS, and mSFG
show strong evidence of synchronization with each other. The
activity in these sites also correlated with the activity of subse-
quent regions in the processing chain even if their activity was
later and aligned with the time of the subject’s response (i.e.,
anterior SPL and the PCG in the motor cortex). These correla-
tions clearly show a progressive lag following the processing
chain order as revealed by the ROL analysis. Interestingly, we
observed a decreased functional connectivity across pairs of
brain regions as their temporal lag widened. In other words, as
the temporal lag and order between two regions increase, their
functional connectivity decreased: ITG with IPS (Δrlag = 4 ms;
Δrpeak = 0.20), mSFG (Δrlag = 70 ms; Δrpeak = 0.15), pSPL (Δrlag =

Figure 5. Temporal dynamics of math processing across regions within individual brains. a, In 15 subjects, we had simultaneous coverage in at least three of the nine ROIs. Each line (with a
shade of gray) represents a single subject. While subjects had dissimilar coverage across the nine ROIs, it is noteworthy that the slope of the linear regression is preserved for all subjects—
independently of the particular group of ROIs covered in each individual brain. Error bars indicate the standard error of the mean. b, RTs were normalized across subjects, and the power of HFB
was plotted for each region. Each row within each matrix represents the averaged signal across trials of individual electrode sites within each anatomical region. These sites have been sorted
according to their average ROL. One can clearly see a correspondent progression of time of onset of the HFB activity (i.e., ROLs) across regions. c, The distribution of ROL values recorded for each of
the nine ROIs across subjects is shown in violin plots with dots representing an averaged ROL of a single electrode across all math trials. See Movie 1.
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490 ms; Δrpeak = 0.07), and PCG (Δrlag = 788 ms; Δrpeak = 0.06);
IPS with mSFG (Δrlag = 36 ms; Δrpeak =−0.18), pSPL (Δrlag =
486 ms; Δrpeak = 0.11), and PCG (Δrlag = 1.01 ms; Δrpeak = 0.07);
mSFG with pSPL (Δrlag = 332 ms; Δrpeak = 0.11) and PCG
(Δrlag = 920 ms; Δrpeak = 0.09); and pSPL–PCG (Δrlag = 436 ms;
Δrpeak = 0.18). To replicate what we had observed in the exemplar
single subject and to probe if the pattern of electrophysiological
correlation was reproducible across subjects, we calculated the
degree of cross-correlation across pairs of electrodes located
between any of the nine regions of interest. We found 219 pairs
of electrodes with math-preferential responses in 29 subjects
who had simultaneous recordings across some (but not all) nine
regions of interest. Note that we used all pairs of electrodes tomax-
imize the dataset, so, for example, if a given subject had two elec-
trodes in the IPS and one in ITG, we included the pairs IPS_1-ITG
and IPS_2-ITG. Next, we plotted the degree of correlation for a

given ROI to all the other ROIs ordered by temporal distance
based on the ROL measures. Next, we conducted a Spearman’s
rank correlation to investigate the relationship between the peak
difference in correlation coefficients (ordered–shuffled trials) and
the temporal order of the ROIs. The p values were FDR corrected
for the nine ROIs. This analysis revealed that for most ROIs (six
out of nine), there was a significantly stronger correlation between
pairs of electrodes that were temporally adjacent and the strength
of connectivity decreased with temporal distance across pairs of
regions. In two (IFG and SMG) regions in which this tendency
did not reach statistical significance, the correlation coefficient
was also negative, suggesting a similar but weaker effect.

Exploring feature-dependent change of activity
Although our experiments were not designed to decipher the
contribution of each brain region in specific cognitive aspects

Figure 6. Functional connectivity of the main math ROIs. a, Exemplar subject with simultaneous coverage of five regions activated during math, from earlier visual to the motor cortex. ITG,
IPS, and mSFG showed strong math selectivity. Top time courses show averaged activity across trials for math and memory. Bottom plots show single trial activity ordered by RT (trial ends when
subject presses the response button). Shaded error bars indicate the standard error of the mean across electrodes. b, The same exemplar subject: lagged correlation between the activated regions.
The lines represent the pairwise correlation coefficient with preserved trial order subtracted from the average correlation from the distribution of 2,000 pairwise correlations generated by
shuffling the trial order. The difference between correlation values from ordered and shuffled data informs how the regions are functionally connected at the single-trial level. Rightward
peaks mean that correlations are delayed. c, Electrophysiological functional connectivity based on lagged correlation for each math-preferential/math-selective ROI with all the other regions,
grouped using the temporal distance between them, calculated from the ROL analysis.
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of arithmetic processing (i.e., which region is contributing to
what), we performed an exploratory analysis as an attempt to
model the activity of each math-active site with a stepwise mul-
tiple linear regression—using the HFB activity as the dependent
variable and several arithmetic “features” as predictors. We only
used data from the sequential calculation task because, by design,
this task isolates two distinct moments of interest: the calculation
stage (following the presentation of the second operand) and the
verification stage (following the presentation of the proposed
result). For instance in 3 + 4 = 8, the calculation stage only begins
after the second operand “4” is shown, and the verification pro-
cess only begins after the result “8” is presented.

We explored the effects of the five main arithmetic features
that had significant impact on the measure of RT. These can be
seen as indirect indices of “problem difficulty”: min operand,
max operand, cross-decade, format, and absolute deviant (see
above, Behavioral performance). In brief, min operand is the
smallest operand, the max operand is the largest operand, cross-
decade means that the product of a calculation is above the dec-
ade of max operand, format refers to digit versus number word,
and absolute deviant is the difference between the correct answer
and the one presented in the equation.

During the calculation stage, we found that the HFB power in
55 recording sites was modulated by the min operand effect and
the majority of these sites (64%) also displayed preferential
responses to math compared with non-math condition (Fig. 7).
Max operand and cross-decade features also modulated the HFB
responses in several sites, with the majority of sites
showing higher HFB activity with higher min operand (78%),
max operand (92%), and equations with a cross-decade
(72%). Only a small proportion of these sites showed preferential
responses for math. The format modulated 93 sites, but only
a minority (31%) showed preferential responses for math,
suggesting thatmajority ofmath-preferential sites are format inde-
pendent and that other areas related to visual processing and lan-
guage contain a large number of sites modulated by digits versus
number words, which might have little to do with calculation
per se. Among these sites, 61% had higher activation for number
words compared with digits. Finally, as expected, no site showed
significant modulation by the absolute deviant, since that informa-
tion is not available at the calculation stage. During the verification
stage, 55 sites (44% math preferential) were modulated by the
absolute deviant, with the majority responding stronger for
increased magnitude of the deviant (64%).

Discussion
Our present study complements the prior imaging studies
(Venkatraman et al., 2005; Amalric and Dehaene, 2016, 2017;

Mathieu et al., 2017; Yang et al., 2017) by providing hitherto
unknown information about the timing of events in the brain
during arithmetic processing. We recorded from a large number
of sites in a large number of human subjects while they per-
formed two arithmetic tasks. We validated the data between
the two tasks and across individual subjects with recordings in
the same regions of the brain. We then characterized, for the
first time, the precise temporal dynamics of distributed but ana-
tomically precise responses across coactivated neuronal popula-
tions in the human brain. This novel information will advance
our understanding of the timing of events across multiple regions
of the brain and will address some of the key open questions as
detailed below.

Activity of a very large mantle of the human brain is changed
when we engage in simple arithmetic
Subtractive approaches often used in neuroimaging methods
contrast responses during a target condition with responses dur-
ing the non-math condition. This subtractive method often seg-
regates different regions of the brain and makes it impossible to
differentiate conditions that lead to similar changes in activity
from conditions that lead to no change in activity. Here, we com-
pared the activity of specific populations of neurons (i.e., sites of
recordings) during the math condition with their own activity a
few hundred milliseconds prior to the onset of the math condi-
tion (i.e., baseline). We observed 45% of all recording sites across
85 subjects showing a significant activity. The engagement was
distributed across virtually all sampled brain regions and in
both hemispheres, and, interestingly, while 80% of the involved
sites showed increased activity during arithmetic tasks compared
with those during the baseline period, 20% displayed decreased
activity. Our results demonstrate that arithmetic processing is
highly distributed in the human brain, which better aligns with
a more recent understanding of brain functions (Westlin et al.,
2023) and corroborates many prior observations with noninva-
sive neuroimaging studies suggesting a widespread activation
of the brain if one considers the baseline activity (rather than a
different cognitive function) as a control condition. These
findings impose constraints on localizationist models of mathe-
matical processing that remain the most influential in the litera-
ture (Dehaene and Cohen, 1995; Dehaene et al., 2003). Our
results suggest a broader landscape of brain regions participating
in mathematical cognition than previously acknowledged. This
includes not only areas demonstrating activation in response to
mathematical stimuli but also regions manifesting deactivation.
This diverse array of responses underscores the complexity and
intricacy of the brain’s processing mechanisms for mathematics,
suggesting that our understanding of these processes needs to

Figure 7. Encoding of arithmetic features across the math-active sites during the sequential arithmetic task. Large and colored dots represent sites in which a given feature significantly explained
variance of the HFB activity (after second operand) and therefore were retained by the stepwise multiple regression fit. The darker color for min operand, max operand, and absolute deviant represents
sites in which the HFB activity increased with the magnitude of these features, whereas the lighter color represents sites in which the HFB activity decreased with the magnitude of these features. For
cross-decade, darker color represents sites in which the HFB activity was stronger for problems that crossed a decade (sites with the opposite effect are shown in lighter color). For format, darker color
represents sites in which the HFB activity was stronger for number words as compared with digits (sites with the opposite effect are shown in lighter color).
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consider a more holistic and interconnected network of regions
rather than isolated localized areas.

Math-preferential and non-math–preferential sites are orderly
colocalized
To make a bridge to the neuroimaging literature, we then
employed a subtractive method (akin to the ones used in neuro-
imaging studies) and found nine regions with significantly higher
responses during the target (i.e., math) condition. The anatomi-
cal location of these sites was remarkably consistent across sub-
jects and replicated the findings reported in previous fMRI
studies, namely, FG, ITG, IPS, SPL, SMG, IFG, MFG, SFG, and
mSFG. In our analysis, we defined the preferentiality of responses
by the presence of significant activation during the math condi-
tion and no activations during the control condition. However,
we emphasize that the set of regions showing preferential
responses during the math condition may not represent a “selec-
tive” math network as their preferential response during the
math condition compared with that during non-math condition
does not imply that they are solely involved in arithmetic pro-
cessing. In keeping with this, we recently showed that electrodes
in the PPC with preferential responses to math also showed pref-
erential responses to visuospatial cues appearing in the contralat-
eral, but not ipsilateral, visual fields (Liu et al., 2021).
Furthermore, as we discuss later, our multiple regression analysis
revealed that the encoding of different arithmetic features is

distributed across brain regions and is not limited to the sites
with strongest math-preferential responses.

A potential confound for the selectivity analysis is related to
the possibility that the math condition may have generally
been more demanding for some subjects. Nevertheless, we posit
that the task demand is not the solitary determinant and present
two reasons to substantiate this claim. First, as elucidated in our
reaction time analyses, an interesting pattern emerged. We
observed higher RT for the math condition when compared
with that for the non-math condition in the simultaneous task.
Yet, a reverse pattern was notable in the sequential task, where
the non-math condition yielded higher RT in comparison with
the math condition. Secondly, our approach to identifying a
site as “math preferential” was predicated on three specific crite-
ria. The site needed to exhibit a significantly higher HFB activity
during math trials as compared with the baseline and a higher
trial HFB activity during the math condition in relation to the
non-math condition. Of paramount importance, though, was
the third criterion: the site was not allowed to show a significant
difference in trial HFB activity during the non-math condition
when compared with that during the baseline. The third criterion
is particularly salient, given that task demand was also a compo-
nent in the non-math (memory) condition, albeit to a lesser
extent. Rather than reporting a “graded” response, we observed
that the math-preferential sites demonstrated no responses dur-
ing the non-math condition. This rigorous definition bolsters our
belief that the observed preferential responses are, in large mea-
sure, driven by the task content.

Neuroimaging studies often highlight a set of brain regions
with increased hemodynamic responses during a target condi-
tion. Such group-based findings may be misinterpreted as if
the entire region is homogeneously activated during the target
condition across individual brains. Our findings provided a
glimpse of functional organization in the human brain in the
mesoscale (millimeter) level. Neuronal populations with
increased activations during the target math condition were
found to be colocalized adjacent to populations with preferential
responses during the nontarget (memory) condition and that
neuronal populations with opposite profiles of activity were
orderly colocalized; that is, anterior proclivity for math preferen-
tiality was seen in IPS, MFG, and IFG; posterior proclivity in SPL
and SFG; dorsal proclivity in the SMG; and right hemispheric
proclivity in the FG. In other words, adjacent populations of
neurons that are anatomically juxtaposed with each other may
have preferentiality for different cognitive functions. That might
explain why neuropsychological patients almost always display a
variety of cognitive deficits spanning different cognitive func-
tions, following a lesion or atrophy in specific brain regions
(Baldo and Dronkers, 2007; Gorno-Tempini et al., 2011). Our
results indicate that some brain regions may indeed be engaged
in both mathematical and linguistic processes and that these
cognitive symbolic systems could share some underlying com-
putational mechanisms. This perspective aligns with a growing
body of evidence pointing toward the overlap in neurodevelop-
mental disorders, reinforcing the idea that these disorders are
complex, multifactorial entities that often manifest in a spec-
trum of probabilistic subtypes (Pennington, 2006). It is notewor-
thy that estimates suggest up to 40% of children with dyscalculia
(mathematical deficits) also exhibit symptoms of dyslexia (read-
ing deficits; Skeide, 2022). Therefore, our findings underscore
the need to move beyond a compartmentalized view of cognitive
functions and toward a more integrated understanding of the
brain activity.

Movie 1. Spatiotemporal activations of the simultaneous calculation task. In the
simultaneous calculation task, subjects judged the accuracy of full arithmetic equations pre-
sented in X + Y = Z format (e.g., 16 + 8 = 22). This video shows how the power of activity in
the HFB changes from ∼100 ms before until ∼1000 ms after the stimulus onset in select
electrodes with preferential activity during the math condition. [view online]

Movie 2. Spatiotemporal activations of the sequential calculation task. Same as Movie 1,
but the responses are measured during the sequential calculation task, when subjects viewed
math stimuli appearing sequentially one at a time in “X”, “+”, “Y”, “=”, “Z” format (e.g., “16”,
“+”, “8”, “=”, “22”). [view online]

Pinheiro-Chagas et al. • Spatiotemporal Dynamics of Arithmetic Processing J. Neurosci., April 24, 2024 • 44(17):e2118222024 • 11

https://doi.org/10.1523/JNEUROSCI.2118-22.2024.video.1
https://doi.org/10.1523/JNEUROSCI.2118-22.2024.video.2


Although our study did not specifically formulate hypotheses
regarding the within-region anatomical organization of juxta-
posed activations, we believe our findings provide a robust foun-
dation for future research. This body of work could delve deeper
into the intricate anatomical structuring associated with high-
level cognitive functions, thereby advancing our understanding
of cerebral organization.

Successive engagement and recurrent interactions
One of the most important findings in our study pertains to our
observation of temporally ordered successive “ignition” of brain
regions during a simple arithmetic function at the single-subject
level. As noted, a much larger extent of the brain was activated
during the math condition. However, by focusing on the select
sites of interest (i.e., nine anatomical regions with math-
preferential responses), we explored the temporal order of activa-
tion across regions and found a successive order of activations,
within the subsecond space, from FG to ITG, IPS, SPL, IFG,
SMG, MFG, lateral SFG, and lastly mSFG sites (Fig. 5b,c).
More importantly, distinct regions of the brain became engaged
and remained engaged above their own baseline across the length
of each trial until the subject responded. It should be noted that
our finding of temporal order of activations was not an artifact of
averaging across different brains. As clearly documented in
Figure 5a, in 15 subjects with simultaneous recording across sev-
eral of the same ROIs, a similar temporal order and slope were
observed. Across subjects, the coefficient of this temporal order
was nearly identical even though each subject performed the
task with variable RTs.

Our observations from the cross-correlational analysis
showed that the temporal precedence of activation was not
sufficient to influence the activity profile of the rest of the chain
of regions. Instead, regions that are temporally closer to each
other seem to be more strongly influencing each other at the
single-trial level. As regions get further apart in temporal order,
their degree of influence decreases. For instance, in an exemplar
subject with simultaneous coverage inmultiple math-preferential
regions, we found a very weak degree of connectivity between the
first and the rest of the regions that responded. However, we
observed a strong functional relationship (with an expected tem-
poral lag) between the ITG and IPS.

Although the aim of the current study was not to arbitrate
between different architectures of information processing in
the brain, our real brain data can be taken as a support of previ-
ously proposed theoretical models such as the ordered and func-
tionally dependent cascade of partially overlapping brain states
(McClelland, 1979). Our observation that the information gets
progressively lost or transformed along the processing chain
also supports theoretical models such as the leaky competing
accumulator model (Usher and McClelland, 2001). The notion
of “information leak” in cognitive processing alludes to the
imperfect retention or utilization of information essential for
the task performance at each step in the processing chain. This
may occur due to either the imperfect transmission of informa-
tion from one brain region to another or because a brain region
does not fully utilize the information it receives. Several factors
could contribute to this “leakage,” such as inherent noise in neu-
ral signaling, the complexity of the information being processed,
or limitations in the brain’s computational capacity (Bernacchia
et al., 2011). From a neurophysiological perspective, these infor-
mation leaks or transformations could manifest through various
mechanisms, for instance, the decay or dispersion of the neural
signal as it travels between the brain regions or the selective

filtering of information based on the task relevance (Kiebel et
al., 2008). Moreover, the transformation of information could
refer to how information is repackaged or reformatted across
different regions or processing stages. Initial processing stages
may involve encoding the basic numerical data or mathematical
operations. In contrast, later stages could involve more complex
processes like error checking, problem-solving strategy selection,
or the integration of numerical data with spatial, temporal, or
other contextual information. Consequently, the same piece of
information could take on different forms or representations as
it progresses along the processing chain.

Overall, our findings are in line with a growing literature that
proposes that even simple tasks like object recognition (Kar et al.,
2019), visibility judgment (King et al., 2016), and hierarchical
perceptual decisions (Gwilliams and King, 2020) involve a
distributed network of recurrent interactions, beyond purely
feedforward architectures (Lamme and Roelfsema, 2000). Our
work expands on these findings from very simple operations
and suggests that a similar architecture underlies the processing
of complex human-unique abilities such as symbolic arithmetic.

Relating the spatiotemporal dynamics of brain activity to
specific stages of cognitive processing
While the current study was not designed to address the neural
mechanisms underlying specific stages of cognitive processing
during the target condition (i.e., mathematical processing), our
data revealed important layers of information that can guide
future mechanistic explorations. For instance, we observed a
clear profile of activations with higher HFB activity primarily fol-
lowing the second operand and after the presentation of the
equation results. These time points are precisely the times in
which subjects become engaged in arithmetic calculation and
comparison between the correct and presented results.
Interestingly, in the sites deactivated during the arithmetic con-
dition, we discovered that the onset of such decreased activity
occurred after the presentation of the second operand matching
(and coinciding in time with) the sharp activations in the func-
tionally opposing regions. These observations were remarkably
reproducible across subjects and consistent with our own prelim-
inary findings in a few regions of the brain (Daitch et al., 2016;
Baek et al., 2018; Hermes et al., 2017). Moreover, by manipulat-
ing the format of presentation (digits vs number words), we
showed that the majority of the math-preferential sites are agnos-
tic about the specific format in which the numbers are presented
and therefore operate on an abstract level.

We should clarify that our current tasks were not specifically
tailored to examine the discrete role of each brain region during
mental calculations. Therefore, our findings should be viewed as
an initial foray toward a comprehensive and precise spatiotem-
poral dissection of the computations performed at individual
brain sites during arithmetic processing. One noteworthy finding
from our multiple regression analysis suggests a distributed
encoding of different cognitive features, challenging the notion
that these features are confined solely to regions displaying
preferential responses during the target condition.

These observations do not just question prevailing notions of
brain functional organization; they also challenge established
models of arithmetic processing, such as Dehaene and colleagues’
triple-code model (Dehaene and Cohen, 1995). In these models,
specific functions related to numerical and arithmetic processing
are assigned to each area within the potential math network.
However, our study unveils a more distributed pattern of the
brain region engagement during mental calculations, which
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does not align perfectly with the functional compartmentaliza-
tion proposed by models like the triple-code model.

Our results thus call for a re-evaluation of traditional models
of arithmetic processing and underscore the necessity for further
research incorporating a more distributed conception of the
brain function. Future iEEG studies, with targeted experimental
tasks, ought to employ a whole-brain level of analysis to decipher
the contribution of each brain region of interest in specific
features of the arithmetic condition.

Closing remarks
Our large-scale anatomical, temporal, and functional iEEG
findings provide novel information about the profile of neural
activity across different regions of the human brain to help char-
acterize how different regions of the brain work collectively in the
service of a given task. As such, the present work ought to be
taken as a prototype model for how different anatomical popula-
tions in distinct regions of the brain change their activity in uni-
son with each other to enable a human subject to perform a
cognitive task as simple as 2 + 2 = 4. We hope that our findings,
along with the acquired raw data, which will be shared in a public
repository, can be used as a real brain data to construct more
accurate theoretical models of distributed brain activity.

Data Availability Statement
The dataset will be shared upon request. All code to
preprocess, analyze, and visualize the data is available at
https://github.com/pinheirochagas/lbcn_preproc.
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